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The topic of this talk...

Passive

radiation
produced by Radiograph revealing contents in a
cosmic rays minute or so without application of

any artificial radiation.
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« Background & Concept

« Experimental Proof of Principle & Simulation
« Point of Closest Approach Reconstruction
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Background & Concept
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Cosmic Ray Muons

Produced from primary cosmic
rays in the atmosphere.

Muo}ws arrive from upper hemisphere at ‘
a rate of about 10,000 / min-m?2.

Many muons can penetrate
several meters of rock.
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*" & Nationat Geoér'aph:'c‘, 1963

That's about one through your fingernail

per minute.
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How Muons Interact with Material

 Energy Loss

 Range Out

* Multiple Scattering

These interaction modes depend material properties, and so
represent potential material identification information sources.
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Differential Attenuation Radiography

Searching for Hidden Chambers in Pyramids

Luis Alvarez, et. al.
Science 167, 832 (1970)

Arturo Menchaca, et. al.
current effort, see
http://www.msnbc.msn.com/id/4540266/

Predicting Volcanic Eruptions

Measuring instrument -+

Tanaka, Nagamine, et. al. “”““Zﬁ’___‘__;;..---—
Nuclear Instruments and Methods A W
507:3, 657 (2003)

Figure d: Analyzing the intemal
structure of a volcanic zone using muons
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Multiple Scattering

Charged particle
with momentum p.

Th'e particle Material |
experiences many with
small angle scatters radiation
due to E.M. length L.y |% L
w
.

interactions with
material atoms.
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Particle is scattered
and displaced from
the original track.

Distribution of scattering angle is
approximately Gaussian:

1
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Standard deviation is related to the material:

15[ L

p Lmd
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Oy

The radiation length L, is a characteristic
property of material that generally
DECREASES with INCREASING material
Z number.
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Scattering is Material Dependent
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The Basic Concept

+ Track individual muons (possible
due to modest event rate).

* Track muons into and out of an
object volume.

« Determine scattering angle of
each muon.

* Infer Z-level of material within
volume from data provided by
many muons.

* New tomographic reconstruction
algorithms are required.

A
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Muon Radiography for Detection of
Contraband Special Nuclear Material

No artificial radiological dose.
No artificial source required.

Low-cost muon detectors
have been used for decades.

Detectors

3D reconstruction enabled by
multi-angle “illumination.”

The heavier the shield the
better.
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Existing methods don’t work "™

well for detecting uranium.
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Experimental Proof of
Principle & Simulation
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Experimental Prototype

. D1 D4 Muon detectors (wire chambers, measure X/Y p05|t|on)
. — “Unistrut” beams
. L — Lexan plate to hold objects
« W - Tungsten cylinder (5.5 cm radius, 5.8 cm height)
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27 cm spacing, all detectors

SR= D4
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Scattering Histograms
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Reconstructed Images

Experiment
] ;#Hi,ff”‘f S ] | i =
g T s,
S | e \\\_ ]
et e — “
R - gy

More on how the images were made later.

Simulation

B

8

Standalone Monte Carlo muon transport simulation developed.
GEANT 4 based simulation has also been tested.
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More Experimental Radiographs

A Steel C-Clamp LANL of Lead
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Point of Closest Approach
Reconstruction Algorithm

o Los Alamos

NATIONAL LABORATORY
LA-UR-03-9204




PoCA Reconstruction Algorithm

0
2 0
i ]
) : 0
._'. = 0

A6

A ray takes a stochastic,

Estimate the ray path and = f{lnr;ghp?lgggﬂz;:loigime Assign squared scattering
path and emerges with an identify pixels that 5 )
aggregate scattering angle. “influenced” the ray.

. : angle to PoCA pixel, 0 to
all scattering occurred in - i
. other candidate pixels.
that pixel.

Taking the mean signal assigned to each pixel over many muons results in an a
reconstruction of material scattering tendency.
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PoCA works well for...

Scenes with relatively small isolated objects

Simulated scene
1x1x1 m3 Fe box (3 mm wall thickness)
4 cm radius U sphere in center

PoCA Reconstruction
~ 1 minute of simulated exposure
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PoCA works less well for...

Scenes with large, distributed, or multiple objects

Simulated scene PoCA Reconstruction
1x1x1 m3 Fe box (3 mm wall thickness) ~ 1 minute of simulated exposure
now filled with solid Aluminum
and 4 cm radius U sphere in center
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Maximum Likelihood
Reconstruction
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“Traditional” Iterative Tomographic
Reconstruction

L, path length Start with a discrete object grid with N elements.

of ray i

A ray passes through the grid

through cell j 3
\ Assume that ray values may be represented by line

integrals of the object function along the ray path.

— e | \

Or, in discrete form, the raysum forray i is

— e £ Py
?&* N
\ i s Z L'Jf,f +H,
J=1

Pass M rays through the grid.

P; Pis1 P= Lf +n

Solve this system iteratively.
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Scattering Density

Particle with
momentum p

Material
with

radiation

Y ans g

»
A
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= 15 X

i p\L.

Establish a nominal particle momentum p,

and define the scattering density of a material as:

7
P 15 1
material — 1
p 0 “rad ,material

Scattering density is the mean square scattering of
nominal momentum muons per unit length of a material.

P

o? =(fﬂ] LA
p
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When Scattering is the Signal

Estimated VARIANCE of scattering expected

L;: path length expressed as:
of ray i .

———— 40,

5

26,

through cell § ; N L)
\ \ Vi=E0y = Z L4,
/ =l

CONDITIONAL PROBABILITY of the
scattering of ray i given the scattering density

estirrfate is: AHZ
46, P(Ag"‘v"): 2, exP[_ 29 ]

for a nominal muon making the path of ray i is

]

26 The scattering of each ray is uncorrelated with
Ay 1 the scattering of any other ray, so the

/ probability of the entire dataset over M rays is:

A8 A6

i+1

P(A6

V)= ﬁ P(A6,
i=1

Vi )
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Incorporating Displacement

Pt Displacement is encompassed in multiple

momentum p, scattering theory.

Bend angle and displacement may be described
by a correlated 2D Gaussian distribution.

Material

1(0.5)-— \Fup[%e SR

-
with
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Using Scattering and Displacement

Now each ray carries the signal:
L; path length

of ray i d = Aé)i
\ through cell j 1= Ax.
/ Expressions can be derived for the covariance
- - matrix as a function of ray paths and scattering
— i density estimates:
—_— | \_—-—‘—‘—-ﬂ dM
— - 2 >
s o s Wi Wi
N g L=, e s 3¢
/ \ d Sii.\'i v..\'i Wﬂx i )\' Wx,i )"'
2
/ Aol A d, - .
.7/ ol | And the probability of the measured signal d,

given the covariance matrix estimate is:

P(dt.|2n?.,.): +exp[—lzdrﬁj_'di]

2,7‘2,]'/2
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Maximizing Likelihood

Define the optimal estimate as the estimate which maximizes
the conditional probability:

a)

Expanding the right side using Bayes Law:

A" =arg max P():
i

*
A =arg max
i

A Plat)p(d)
P(d)

The denominator term is a constant, and if we assume that any
object makeup is equally probable:

i)

A= arg max P(d
i
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Maximizing LOG Likelihood

Maximizing the log of the likelihood is equivalent to maximizing likelihood:
A= arg max ln[P(d|i)]
Ao

~

* M ol
A =arg max Z ln[P(di]Ei )]
¥ i=1
Recall that the ray probabilities are Gaussian:

A —argmaxZ[ In 2ﬂ)——lnq ‘)—%dfﬁi‘ld,}

~

M . A
A" =argmin ) [lnq)li‘)+ d,.TE,.’ld,.]
A i=1
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The Minimization Problem

We now have a cost function for a minimization problem:

Fi)=3 (g} arga,
i=1

However, we need to constrain scattering densities to positive
values, in fact, to values at least representative of air.

Hence we define the constrained minimization problem:

A" =argmin F ():) such that A, > 4, forall j

A
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Finding a Solution

« Constrained optimization via trust region based Newton type
method

— Analytical expressions for Jacobian and Hessian matrices can be
developed.

— Works well for scenes with small number of parameters and rays
(e.g., around 1000 voxels, a few thousand rays on a desktop PC).

- Computation and storage of Hessian matrix limits problem size.
+ Expectation Minimization (EM) Algorithm

— Slower convergence than Newton type method. |
— Can handle larger problems (e.g., 100K+ voxels, 100K+ rays).
— Parallelizable.
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Extensions

Measurement Error Muon Momentum Spread
+ Finite detector resolution  Real cosmic ray muons vary in
generates uncertainty in bend momentum
angle and displacement

» If momentum estimates are
available then they can be
» Error may be modeled and incorporated:
included in the statistical model.

measurements.

Forray i
« Forrayi ) )
v — 0
2 —W. A+ E> FP"_MZP(A J
Oy = Wy AQ D;
~ 2 A 2
Opei = Wouh + E g, Oy, =F, Wb+ E},
o =W h+EL Cpi =F, Wy h+E,,

2 X 2
o, =F, WA+ E,
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ML/EM Reconstruction Results

Previous scene
U sphere buried in Al
1 minute simulated exposure

PoCA Reconstruction ML/EM Reconstruction
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ML/EM on Experimental Data

A good start but a bit messy.
More work is needed to understand causes.

A
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Momentum Estimation

Object
measurement
area

Momentum
measurement
area

* Measuring particle momentum

| 1/
[/ increases confidence in material
711 inference.
4
/[L ;/ * One method is to estimate
i / momentum from scattering
[ through known material.
fil « With 2 plates Ap/p is about 50%.
A «  With N measurements Ap/p
o > approaches:
{ = ._|¢_ Plates of ]
5 ————  known e
e e 2N
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'y | Future Work

Cosmic Ray Muon Radiography is a completely new mode for imaging
objects with passive radiation with significant potential applications.

ML/EM reconstruction algorithm very recently developed.
— Promising results on simulated scenes.
— Working on understanding issues with experimental data.
— May need to add regularization.
~ Reconstruction in near real time will be challenging.

For yes/no detection of contraband high>-Z objects several other analysis
methods are proving effective.

— Heuristic data reduction methods involving tracing highly scattered rays.
— Simple featurization of ray data coupled with SVM classification.

— These methods tested on thousands of simulated cases with varying
cargos. '

— We are building a large scale experimental prototype to validate simulated
results and demonstrate robust large scale detectors.
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